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SUMMARY

Odor information is encoded in the activity of a pop-
ulation of glomeruli in the primary olfactory center.
However, how this information is decoded in the
brain remains elusive. Here, we address this question
in Drosophila by combining neuronal imaging and
tracking of innate behavioral responses. We find
that the behavior is accurately predicted by a model
summing normalized glomerular responses, in which
each glomerulus contributes a specific, small
amount to odor preference. This model is further
supported by targeted manipulations of glomerular
input, which biased the behavior. Additionally, we
observe that relative odor preference changes and
can even switch depending on the context, an effect
correctly predicted by our normalization model. Our
results indicate that olfactory information is decoded
from the pooled activity of a glomerular repertoire
and demonstrate the ability of the olfactory system
to adapt to the statistics of its environment.
INTRODUCTION

A prominent feature of the olfactory system is its widely distrib-

uted code. Even monomolecular odorants typically bind to mul-

tiple types of olfactory receptors (Malnic et al., 1999), recruiting

multiple postsynaptic glomeruli without apparent spatial or che-

motopic organization. Different odorants recruit different sets of

glomeruli (Friedrich and Korsching, 1997; Hallem and Carlson,

2006; Joerges et al., 1997; Ng et al., 2002; Rubin and Katz,

1999; Uchida et al., 2000; Wang et al., 2003) with distinct tempo-

ral dynamics (Cury and Uchida, 2010; Friedrich and Laurent,

2001; Spors and Grinvald, 2002; Wehr and Laurent, 1996), and

most glomeruli respond to a wide array of odors. These observa-

tions demonstrate that in a range of organisms, including in-

sects, fish, and mammals, early olfactory information is

represented as spatio-temporal patterns of glomerular activity.

How these activity patterns are decoded by the brain to guide

odor-evoked behavior, however, remains largely unknown.

Olfactory research in Drosophila melanogaster has provided

elements of answer to this question. Using behavioral genetics,

attraction, and aversion to specific odors have been linked to

the activation of one or a few glomeruli in the antennal lobe
(AL) (Ai et al., 2010; Dweck et al., 2013; Min et al., 2013; Ron-

deros et al., 2014; Schlief and Wilson, 2007; Semmelhack and

Wang, 2009; Stensmyr et al., 2012; Suh et al., 2004). These ob-

servations suggest a labeled-line coding strategy, in which indi-

vidual glomeruli convey signals of specific ethological relevance

for the animal and their activation triggers the execution of hard-

wired behavioral programs. However, it remains uncertain

whether this is a property of a specialized subset of glomeruli

or constitutes a general coding principle in the AL. More impor-

tantly, how compound signals from multiple glomeruli are inte-

grated to determine the valence of odors, including mixtures of

odors commonly found in natural environments, is poorly under-

stood (Kreher et al., 2008).

Another open question is the coding beyond absolute odor

valence. Flies, for example, choose the less aversive odor

when forced to make a choice between two inherently aversive

stimuli (Tully and Quinn, 1985). Moreover, studies in humans

have shown that the evaluation of relative odor valence changes

depending on the context (Clepce et al., 2014). How relative

valence is computed in the brain and how it is modulated ac-

cording to the context remains elusive, although a recent study

showed that divisive normalization can explain context-depen-

dent choice behavior in primates (Louie et al., 2013).

Here, we used a combination of optical imaging and behav-

ioral techniques to address these questions systematically. We

used two-photon imaging to monitor Ca2+ signals in the whole

AL in response to a diverse set of odors. Comparing these

data with odor-evoked behavioral responses allowed us to

formulate a decoding model describing how innate olfactory

behavior is dictated by the population of projection neurons

(PNs), the AL output neurons, in a quantitative manner. We found

that a weighted sum of normalized PN responses can recapitu-

late observed behavior and predict responses to novel odors,

including mixtures and odors at different concentrations. The

valence assigned to individual glomeruli in our analysis is consis-

tent with previous findings; however, the contribution of individ-

ual glomeruli to the behavioral output is small, indicating that

odor valence is not dominated by a few privileged glomeruli

but depends on pooling small contributions over a large number

of glomeruli. This conclusion is further supported by genetic

silencing and optogenetic activation of individual olfactory re-

ceptor neuron (ORN) types, which evoked modest biases in

behavior in accordance with the model predictions. Strikingly,

behavioral responses were altered when the same odors were

tested in different olfactory contexts. Our decoding model

captured this adaptive behavior and correctly predicted that

the relative preference of pairs of odors could switch depending
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Figure 1. Differential Responses to Attrac-

tive and Aversive Odors in a Flight Arena

(A) Schematic of the virtual-flight arena. Flight

behavior is probed using microphones, whose

output is fed to a closed-loop feedback system that

updates visual and olfactory stimuli in real time.

(B) Schematic of the behavioral assay. The fly

starts each trial in the center of the odor plume,

after which it is free to adjust its heading direction

to navigate in or out of the plume.

(C) Trajectories of a representative fly’s orientation

in the flight simulator in response to 15 repeated

applications of six odors and three control stimuli

(mineral oil, water, and air). Gray bar indicates the

period of odor delivery (4 s). Colored portions

indicate that the animal is navigating in the plume.

Attractive odors (leftmost) evoke little turning re-

sponses in contrast with aversive odors (right-

most), for which sharp turns are observed in the

majority of trials. ACV, apple cider vinegar; MNG,

mango mimic; BUT, butanal; BNZ, benzaldehyde;

2-MP, 2-methylphenol.

(D) Instantaneous value of the valence index (VI,

the proportion of time spent outside the odor

plume) plotted relative to the onset of odor appli-

cation for the nine stimuli in (C). Shaded regions

denote SEM computed over flies (n = 20). VI

values are best separated near the end of the odor

application period (horizontal gray bar).

(E) Mean VI values computed by averaging the

instantaneous VI in the last 1 s of odor application.

Error bars indicate SEM over tested flies (n = 20).

Asterisks denote statistically significant differ-

ences compared with the air control in black

(Wilcoxon signed-rank test, Bonferroni-corrected,

p < 0.05). Mineral oil and water evoke mildly

attractive responses compared to air.

(F) Mean VI values for 36 pure odorants and 3 control stimuli (n = 20–23 flies for each stimulus), relative to mineral oil, in increasing order. Error bars indicate SEM.

Asterisks denote stimuli significantly more attractive (3) or aversive (13) than mineral oil (Wilcoxon signed-rank test, Bonferroni-corrected, p < 0.05). Colored

stimuli are common with (C)–(E); identity of other stimuli is listed in Table S1.

(G) Absolute difference in left and right wing beat amplitudes (mean over all trials and flies) against time from odor onset, for the most attractive (green, ACV) and

the most aversive (magenta, 2-MP) odors in (E) and air (black). Aversive response is fitted with a sum of exponentials (dashed line). Shaded regions denote SEM

over flies (n = 20). Inset: Pearson correlation between the VI and cumulative jDWBAj, for odor set in (E).
on the olfactory context. These results highlight the ability of the

olfactory system to adapt to the statistics of its olfactory environ-

ment, similarly to the visual and auditory systems (Kohn, 2007;

Wark et al., 2007).

RESULTS

Differential Responses to Attractive and Aversive Odors
in a Flight Arena
We first sought to characterize odor-evoked behavioral re-

sponses by monitoring the behavior of tethered flies in a flight-

simulator arena. The arena was equipped with a closed-loop

feedback system that allowed animals to virtually adjust their

heading direction by modulating the amplitudes of their left

and right wing beats (Figures 1A and S1). A change in heading

direction was accompanied by a corresponding rotation of the

visual and olfactory landscapes, defining a virtual-reality-like

environment for the animal to navigate. Olfactory stimuli were

delivered in the form of a plume, spanning 45� in azimuth, which
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flies were free to exit or re-enter by adjusting their heading direc-

tion (Figure 1B). The valence of olfactory stimuli in this setup

could thus be assessed by monitoring the tendency to navigate

in or out of the odor plume.

We initially characterized odor-evoked behavior in this assay

using a set of six odorants, which we expected on the basis of

prior reports (Knaden et al., 2012; Semmelhack and Wang,

2009) and preliminary experiments to be either strongly attrac-

tive or aversive, and three control stimuli (mineral oil, water,

and air). Flies often exited aversive odors by producing a fast

saccadic turn (Figure 1C). Similar avoidance behavior was not

observed in response to air, for which trajectories only showed

occasional low-amplitude saccades. Attractive odors, on the

other hand, evoked a reduction in turning rate and a tendency

to navigate in the odor for a longer time.

To quantify these responses, we defined a measure of olfac-

tory preference termed valence index (VI) as the proportion of

time spent outside the odor plume. When computed relative

to the time of odor application, instantaneous VIs increased



monotonically and showed consistent trends extending beyond

the period of odor application (Figure 1D). Given that attractive

and aversive VIs were best separated near the end of the odor

application period, we scored each odor using themean VI value

in the last 1 s of odor application (Figure 1E; our results are

largely independent of the choice of the scoring period, see

Figure S1).

Of the six tested odors, two attractive and three aversive odors

evoked significant responses compared with air (Figure 1E). Sol-

vents also evoked mildly attractive responses. Attraction to hu-

midified air has been documented and is strongly reduced by

the mutation of Orco (Lin et al., 2015). Attraction to mineral oil

also likely depends on the olfactory system, as mineral oil

evoked sparse but significant glomerular activity in our measure-

ments (see Figure 2D), and blocking synaptic transmission in

Orco-dependent ORNs evoked a small increase in VI (Figure S2).

To further examine responses to diverse odors, we screened

odor-evoked responses to a panel of 84 odors, consisting of

36 pure odorants, 4 of whichwere sampled at 4 different concen-

trations, and 36 binary mixtures of attractive and aversive odors

at various ratios (Table S1). Odors were sampled in sets of 6 and

delivered sequentially in each experiment. To verify that the

baseline behavior was consistent across different odor sets,

we included mineral oil in every experiment. VI values for the

36 pure odorants showed a nearly continuous array of responses

(Figure 1F). After correcting for multiple comparisons, 3 odorants

were significantly more attractive, and 13 were more aversive,

than mineral oil. When compared to air, odors were almost sym-

metrically split into two sides (Figure 1F). These results demon-

strate that flies exhibit both attraction and aversion in response

to a variety of odors in our assay.

Fast Escape Responses to Aversive Olfactory Stimuli
Inspection of individual flight trajectories (Figure 1C) revealed

that escape responses to aversive stimuli can be remarkably

fast. Because flight orientation is controlled by the relative

amplitude of wing beats, we computed the absolute difference

between the left and the right wing-beat amplitudes (DWBA).

As expected, air did not evoke noticeable changes inDWBA (Fig-

ure 1G). In contrast, aversive odors evoked a sharp, transient

increase in DWBA, whereas attractive odors evoked a slower,

sustained decrease. VI values were tightly correlated with the

cumulative DWBA (Figure 1G, inset), confirming that our behav-

ioral measure reflects an active, stimulus-evoked modulation of

the turning rate.

To estimate the response latency, we fitted DWBA for an

aversive odor with a sum of exponentials (Figure 1G). The

fitted curve deflected (10% rise time) 200 ms after the first con-

tact with the odor, indicating that the time required to perceive,

process, and respond to an aversive stimulus is shorter than

200 ms.

In Vivo Ca2+ Imaging of PN Responses in 37 Identified
Glomeruli
We next examined PN activity in response to the same panel of

odors under identical odor delivery conditions. In the fly AL, in-

puts from ORNs are segregated into �50 glomeruli, all of which

are identifiable across individuals (Couto et al., 2005; Fishilevich
and Vosshall, 2005; Vosshall et al., 2000). Because PNs in the

same glomerulus transmit highly correlated information (Kazama

and Wilson, 2009), each glomerulus can be considered as a unit

of output. Therefore, the entire olfactory information transmitted

from the AL can be obtained by monitoring PN activity in a mere

�50 dimensional space. To achieve this, we expressed the cal-

cium sensor GCaMP6f (Chen et al., 2013) under the control of

NP225-Gal4 (Tanaka et al., 2012; Thum et al., 2007), which labels

37 glomeruli with high specificity (Figure 2A). GCaMP fluores-

cence in the entire AL was imaged at �1.7 Hz using two-photon

microscopy in response to the 84 odors in our dataset. To ac-

count for brain movement during recordings and variability in

AL morphology across animals, we registered all images to a

template AL (Figure 2B), and the fluorescence in each glomer-

ulus was extracted by averaging over the spatial extent of the

corresponding glomerulus in the template (Figure S3). Consis-

tent with previous reports, glomeruli exhibited various tuning

breadths: a glomerulus responded on average to 22% ± 16%

(mean ± SD) of all tested odors. Similarly, odors recruited on

average 8 ± 5 of the 37 glomeruli (Figures 2C and 2D).

Odor Onset Responses Carry Enough Information to
Classify Odors
The rapidity of aversive responses suggests that animals rely on

the instantaneous, spatial dimension of PN responses to make

perceptual decisions. This requires that a single ‘‘snapshot’’ of

the PN response contain sufficient information to categorize

odorants. To verify this, we trained a linear classifier to predict

odor identity based on PN responses in a single imaging frame.

Because each odor was presented four times in each animal,

we used data from three trials to train the classifier and the re-

maining trial to test classification performance. As expected,

classification accuracy was close to chance level before odor

application, and increased shortly after odor onset (�150 ms

after odor contact; Figure 2E), peaking near 65% over time

(�1.3–3.7 s after odor contact). It is worth noting that the onset

of this increase in classification accuracy matches well with the

onset of the aversive response. Performance decayed after

odor offset; however, it remained well above chance level

throughout the recording period (13 s beyond odor offset), sug-

gesting that residual PN responses carry a significant amount of

information about past stimuli.

Responses to Binary Mixtures Suggest Linear
Integration of Olfactory Channels
Comparing behavioral and imaging data showed that PN re-

sponses in a number of glomeruli exhibited significant linear cor-

relations with VI (Figure S4), suggesting some degree of linearity

in the transformation from PN responses to behavior. The total

AL activity, however, only correlated weakly with behavior (Fig-

ure S4), indicating that the intensity of AL activation is not the

sole determinant of odor valence. To examine the relationship

in more detail, we focused on mixture data and asked whether

behavioral and physiological responses vary in proportion to

the mixing ratio of the components. VI scaled linearly with the

mixing ratio (Figure 3A). This trend was paralleled in PN activity:

linearly regressing the vectors of PN responses on the mixing

ratio lead to a very accurate description of PN data (R2 of fit
Neuron 91, 155–167, July 6, 2016 157
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Figure 2. Odor Representations in the Antennal Lobe PNs

(A) Expression pattern ofNP225-Gal4 in the adult brain (NP225-Gal4/UAS-mCD8::GFP). The brain was stained with nc82 (gray) and anti-GFP (green). White circle

indicates the region scanned in imaging experiments (right antennal lobe).

(B) Template antennal lobe used in image registration, showing the spatial arrangement of 37 glomeruli labeled by NP225-Gal4 (arbitrary color code).

(C) Sample Ca2+ responses to three odors. DF/F of GCaMP6f fluorescence is color coded according to the scale bar in (D). Horizontal axis is time (40 595-ms

frames), vertical axis is glomerulus. Gray solid bar at the bottom indicates the period of odor application (4 s).

(D) Mean Ca2+ responses to 36 pure odors and the mineral oil solvent (imaging frames 10–17, n = 4–9 brains). Odors are arranged by functional groups: 1,

alcohols; 2, acids; 3, esters; 4, aromatics; 5, ketones; 6, aldehydes; 7, terpenes; 8, lactones; 9, sulfur compounds; 10, amines; 11, multimolecular compounds.

Significant responses are marked with a white dot (Mann-Whitney U test, p < 0.01, see Supplemental Experimental Procedures).

(E) Odor classification performance as a function of imaging time frame. The task was to classify 84 odors given the response of 37 glomeruli in a single imaging

frame. Shaded region shows SD over four classifiers, each of which uses a different imaging trial as the test. Gray line shows performance after shuffling

glomerulus labels. Dotted line indicates chance level (1/84).
0.6–0.97; Figure 3B). These results suggest a linear relationship

between PN responses and behavior.

Olfactory Contrast Normalization Enables Accurate
Decoding of PN Responses
Linear models are widely used to examine the relationships be-

tween neuronal activity and behavior. In larval Drosophila, a

linear model based on the activity of ORNs was successful in

predicting behavioral responses to a panel of 26 odorants

(Kreher et al., 2008). To test whether this framework could

explain our data quantitatively, we constructed a decoding

model (referred to as linear model) in which the VI is calculated

as a weighted sum of glomerular activity (Figure 4A). We fit the

model parameters using regularized linear regression (see

Experimental Procedures) with training data, and examined

its predictive power with test data not used in the fitting

procedure. Prediction performance was evaluated using the

R2 coefficient (see Experimental Procedures). Unexpectedly,

we found that while the model could accurately describe the

training data, it performed poorly at predicting the test data

(Figure 4B).
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We reasoned that a possible cause for the failure of the linear

model is that odorants were delivered in sets of six in our exper-

iments: the response to one of the odors in the set may be

affected by the experience of the other five odors, for example,

through sensory adaptation. To test this, we constructed a sec-

ond decoding model (referred to as normalization model) in

which glomerular outputs were passed through a nonlinear

normalization step before the summation (Figure 4A). Normaliza-

tion is meant to represent adaptation to the statistics of the

olfactory environment and was minimally modeled using a

mean subtraction followed by a rescaling by the SD of each

glomerulus’ response to the odor set, both of which commonly

describe neuronal adaptation (Baccus and Meister, 2002; Chan-

der and Chichilnisky, 2001; Nagel and Doupe, 2006; Ohzawa

et al., 1985). Importantly, this form of normalization is compatible

with the linearity observed in response to mixtures.

We fit the model parameters using the same procedure as for

the linear model. Notably, we found that the normalization model

not only accurately described the training data, but also yielded

accurate predictions of the test data (Figure 4B). This prediction

performance was highly significant (permutation test, p < 0.002),
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Figure 3. Linearity of Neuronal and Behavioral Responses to Binary

Mixtures of Attractive and Aversive Odors
(A) VI (mean subtracted) in response to mixtures of increasingly aversive

content, for nine different binary mixtures (n = 20–27 flies for each mixture) of

three attractive and three aversive odors (Table S1). Magenta dashed line is a

linear fit to the data.

(B) Linearity of PN responses assessed by fitting the six 37-dimensional vec-

tors of PN responses to each binary mixture set using linear regression. The R2

coefficient is shown as a function of mixing ratio for each of the nine mixture

sets (black lines). Magenta line is the average R2 over the nine mixtures. Mean

R2 across mixture ratios is 0.86.
suggesting that the normalization operation renders the relation-

ship between the predictors (glomerular activation) and the

dependent variable (VI) more linear.

We next tested how the performance varied with the number

of glomeruli included in the list of predictors. Because sampling

all possible subsets of 37 glomeruli would be computationally

prohibitive, we tested instead a multitude (742,700) of randomly

chosen subsets. The average prediction performance increased

monotonically with the number of glomeruli (Figure 4C, top

graph). Importantly, even when restricted to only the best subset

of each size (Figure 4C, bottom graph; see Supplemental Exper-

imental Procedures for definition of best subsets), the perfor-

mance continuously increased up to intermediate sizes (�20

glomeruli) before slight overfitting occurred. These results sug-

gest that the majority of glomeruli carry information about the

dependent variable.

A final model was constructed by averaging the sets of

glomerulus weights obtained in the cross-validation procedure.

This resulted in a balanced number of 18 attractive and 19 aver-

sive glomeruli (Figure 4D). We confirmed that the model accu-

rately explained the responses to pure odors and mixtures

(Figure 4E), and further challenged the model with an additional

set of test data consisting of four odors at three different concen-

trations. Again, while the linear model failed to predict these data

quantitatively, the normalization model gave accurate predic-

tions (Figure 4E).

Silencing Subsets of Olfactory Receptor Neurons
Weakly Biases Behavioral Output
These results demonstrate strong correlation, but not causality,

between glomerular response and behavioral output. To test the

causal relationship, it is necessary to perturb glomerular activity

and assess the impact of the manipulation on the behavior. To

achieve this inahighlyglomerulus-specificmanner,wegenetically

silenced synaptic input to glomeruli by expressing tetanus toxin
(TNT), a potent blocker of vesicular release (Sweeney et al.,

1995), in ORNs using Or-Gal4 drivers, which drive virtually no

expression outside the targetORNs (Couto et al., 2005; Fishilevich

and Vosshall, 2005). We targeted five different glomeruli: DM1,

DM4, DM5, DC3, and VC1. These particular glomeruli were cho-

sen in part on the basis of their established attractive or aversive

role, and partly based on the predictions of our model. In an

attempt to evoke larger effects, we tested two lines in which TNT

wasco-expressed in threedifferentORN types.A first set (glomer-

ulus DM5, DC3, and VC1) was chosen to evoke changes toward

more attractive VI values and a second set (glomerulus DM4,

VA2, and VA4) was selected to induce more aversive responses.

A number of results supported the conclusion that behavior is

determined by the summed activity of many glomeruli. First, in

accordance with the prediction that blocking input to a small

number of glomeruli should have limited behavioral effect, VIs

in flies expressing TNT in one or three glomeruli were not sub-

stantially different from those in the control flies (Figure 5A).

Notably, blockade of synaptic transmission in DM1 or DM5

ORNs, which abolished attraction or aversion to different con-

centrations of apple cider vinegar in walking flies (Semmelhack

and Wang, 2009), did not remove innate responses to this as

well as other odors in our experiments (Figure 5A). To rule out

the possibility of an incomplete effect of TNT, we expressed

TNT in either DM1 or DM5 ORNs while expressing GCaMP3

(Tian et al., 2009) in PNs under the control of GH146-QF (Potter

et al., 2010) and quantified the change in postsynaptic PN re-

sponses to ethyl acetate, an odor that activates both types of

ORNs. PN activity in glomerulus DM5 was completely abolished

when TNT was expressed in presynaptic ORNs (Figure 5B).

Thus, the limited behavioral effect of ORN blockade cannot be

attributed to an incomplete action of TNT at least in the case of

DM5. In glomerulus DM1, the reduction in PN response was

only �40% (Figure 5B); however, this residual activity is likely

to be the result of lateral interactions between glomeruli, which

provide excitatory drive to PNs whose cognate ORNs are

silenced (Olsen et al., 2007; Root et al., 2007; Shang et al.,

2007). To examine this possibility, we inferred a PN-PN connec-

tivity matrix using the correlation structure of Ca2+ signals during

the baseline period (Figure S5 and Experimental Procedures)

and used the resulting connectivity to estimate odor-evoked

PN activity in TNT-positive flies. This model accurately predicted

both the moderate decrease in DM1 and the strong decrease in

DM5 activity in the absence of direct ORN input (Figure 5C).

These results support the conclusion that olfactory behavior dur-

ing flight is not dictated by a few privileged glomeruli.

Second, a closer inspection revealed that VIs were biased in a

direction consistent with the weight of each glomerulus in our

model. When we computed the correlation between the esti-

mated TNT-induced change in PN activity and the change in

VI, the sign of the correlation matched the expected sign in all

cases (Figure 5D). Interestingly, synaptic blockade in DM4 and

VC1 had an effect on behavior, which was never reported previ-

ously, thus expanding the list of contributing glomeruli.

Finally, and most critically, our model quantitatively predicted

the behavioral effect of blocking ORNs. We computed the

R2 values between the observed TNT-induced changes in VI

and model predictions for single- and triple-ORN blocking
Neuron 91, 155–167, July 6, 2016 159
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Figure 4. Olfactory Normalization Enables

Predictive Decoding of PN Responses

(A) Schematic of the linear and the normalization

models. In the normalization model, individual PN

responses are normalized, weighted, and summed

to produce the estimate of the VI. Normalization

parameters (mean, m and standard deviation, s)

are computed using the PN responses to the six

odors in each set.

(B) Prediction performance of the linear and the

normalization models. Both models are fitted on

training data and evaluated on test data using the

same procedure. Data comprise 36 pure odorants

and 36 binary mixtures (n = 20–27 flies for each

stimulus). Top: scatter plots of the normalization

model predictions against measured VI. Data from

nine cross-validation rounds is pooled. Bottom:

summary of prediction performance for the two

models. Although the linear model accurately de-

scribes the training set, it fails to predict the test

set accurately. The normalization model yields

accurate predictions that were highly significant in

a permutation test (p < 0.002).

(C) Prediction performance of the normalization

model as a function of the number of glomeruli

included in the model. 742,700 randomly drawn

subsets of glomeruli were sampled and model

parameters were fit as in (B). Top graph shows

average performance; bottom graph shows per-

formance of the best subset of each size (see

Supplemental Experimental Procedures).

(D) Glomerulus weights in the final model (average over the nine sets of regression weights obtained in cross-validation). Negative weights correspond to

attractive and positive weights to aversive glomeruli. Error bars show SD; error bars extending beyond zero have been truncated. Asterisks indicate glomeruli for

which the response to more than half of the sampled odors was inhibitory.

(E) Performance of the final model constructed using the weights in (D). Top: scatter plots of the normalization model predictions against measured VI, for the two

sets used in cross-validation (pure odors andmixtures) and an additional set of four odors at three concentrations (Table S1). Bottom: a linearmodel created using

the same procedure accurately describes the pure odor andmixture datasets but fails to correctly predict the concentration data. The normalization model yields

highly accurate predictions (p < 0.008, permutation test). Mix, mixtures; Conc, concentration.
experiments. For bothdatasets, theR2coefficient showeda large

increase during the odor-application period (Figure 5E), which

was significant (permutation test, p < 0.006). The quality ofmodel

predictionswas higherwhen threeORN typesweremanipulated,

matching the idea that blocking multiple ORNs evokes larger

changes in behavior (Figure 5F). In triple-ORN blocking experi-

ments, performance was maximal when all three glomeruli were

blocked in the model, with each individual glomerulus explaining

a smaller amount of variance in the data (Figure 5G). This

indicates an additive effect of blocking multiple ORN types

concurrently. Taken together, these results suggest that blocking

ORN biases behavioral output, in a direction determined by the

identity of the blocked ORNs, and with amplitude that scales

with the change in PN activity in their cognate glomeruli.

Activation of Specific ORNs Evokes Attraction
To further test the causal relationship between glomerular activ-

ity and behavior, we asked whether we can bias the behavior

according to themodel by artificially activating a specific glomer-

ulus. This was achieved by expressing Chrimson, a red-shifted

variant of channelrhodopsin (Klapoetke et al., 2014) in ORNs

belonging to a particular glomerulus and exciting it with light.

We chose to focus on DM4 because this glomerulus had the

largest weight in our decoding model. The effectiveness of
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Chrimson was verified by recording from antennal ab2 sensilla,

which house the DM4 ORNs (ab2A neurons). Application of

637 nm laser light evoked robust increases in firing frequency

in ab2A neurons that scaled with light intensity (Figure 6A). We

then tested whether light-induced activation of these ORNs

had an impact on the behavioral response to odors. We tested

two odors, g-butyrolactone and linalool, which evoke relatively

sparse PN activity but excite ab2A neurons. Both odors were

significantly more attractive when paired with light than when

applied alone (Figure 6B). In contrast, control flies showed no

significant change in VI. To further confirm that this increase in

attraction is not an artifact of the laser stimulation, we restricted

light application to the antennae by covering the eyes and the

head cuticle with aluminum foil, so that only the antennae were

exposed to the light (Figure 6C). Flies prepared in this way

showed a significant decrease in VI in response to light stimula-

tion in the absence of odor (Figure 6C); again, no change was

observed in control flies. These results demonstrate that activa-

tion of DM4 ORNs evokes attraction in our setup.

Dependence of Relative Valence on the Olfactory
Context
One interpretation of the normalization model is that the attrac-

tive or aversive effect of a glomerulus is modulated by the
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Figure 5. Behavioral Effect of Genetically

Blocking Odor-Evoked Activity in Subsets

of ORNs

(A) Comparison of VIs in TNT-positive (progeny of

Or-Gal4 3 UAS-TNT) and control (UAS-TNT/+)

flies. Identity of glomeruli in which ORN output is

blocked is indicated in color legend. Error bars

show SEM across flies. Each genotype (n = 21–26

flies) was tested using a set of six odors, except

DM5, which was tested with two odor sets (12

stimuli).

(B) Comparison of Ca2+ responses of the PNs in

glomerulus DM1 and DM5 to ethyl acetate with or

without TNT expression in their cognate ORNs

(mean ± SEM). TNT expression significantly

reduced the response of DM5, but not DM1 PNs

(two-sample t test, p < 0.05). DM5 response in

TNT-expressing flies is not significantly different

from zero (two-tailed t test, p = 0.22).

(C) Percentage of reduction in Ca2+ fluorescence

due to TNT expression (data in B) compared with

the predictions of a model in which ORN-PN syn-

aptic transmission is blocked but PNs receive

excitatory input through lateral interactions between glomeruli. The prediction is computed from the Ca2+ responses recorded in GCaMP6f flies using an inferred

PN-PN connection matrix (see Figure S5 and Supplemental Experimental Procedures).

(D) Pearson correlation between TNT-induced changes in PN activity and observed changes in behavioral response (six values for each condition; glomerulus

DM5 tested with two different odor sets). Odor-evoked PN activity in TNT-positive flies is computed as in (C) and normalized according to the normalization

model. The correlation of the pooled data was significant (two-tailed t test, p < 0.01), in both cases where either one (left) or three (right) ORN types were blocked.

(E) R2 of predicted change in VI for the case where one or three ORN types were blocked, shown as a function of imaging time frame. Odor application period is

indicated by a black bar (4 s).

(F) Mean prediction performance for the case where either one or three ORN types were blocked. The R2 averaged over three consecutive imaging frames is

shown before odor application (Pre, frames 3–5), and during odor application (During, frames 12–14). Error bars indicate SD over the three imaging frames.

Asterisks indicate statistical significance (p < 0.006, permutation test).

(G) Prediction performance as a function of the identity of blocked glomeruli in the model, showing additive effects of glomerular blockade.
olfactory context. From the point of view of a PN, an olfactory

context is characterized by a specific history, or profile, of acti-

vation, with different contexts giving rise to different activation

profiles. In a hypothetical example shown in Figure 7A, an aver-

sive glomerulus responds similarly to a set of odors in context A,

thus making its activation profile narrow (top red histogram). The

normalization procedure broadens this histogram (bottom red

histogram), enhancing differences between odor responses (re-

sponses to odor 1 and 2 become more separated). On the other

hand, the difference between odor responses becomes sup-

pressed in an attractive glomerulus having an initial broad profile

(top blue histogram). When considering valence integration over

two glomeruli, odor 1 in this example is more attractive than odor

2 (VI2 – VI1 > 0). Intriguingly, if we assume mirror symmetric acti-

vation profiles in context B, odor 1 would become more aversive

than odor 2, even though the glomerular responses to the two

odors (indicated by large arrowheads) are identical in both con-

texts (only the contextual activation by other odors indicated by

small arrowheads, differ). In sum, the relative valence of two

odors may vary depending on the identity of the other odors pre-

sented in the same experiment. In the extreme, the preference

between two odors may switch when sampled in particularly

different contexts (Figure 7A).

To test whether this phenomenon actually occurs, we

measured behavioral responses to five different odor pairs,

each of which was tested in two different olfactory contexts con-

sisting of four other odors (Figure 7B). We computed the relative
valence as the difference in VI between the two odors in the pair

and tested whether and how the relative valence depended on

the olfactory context. We found that the relative valence was

indeed affected by the other odors in the set (Figure 7C). The

observed changes were relatively small; however, the predic-

tions of our model consistently matched the data, and this effect

was statistically significant (p < 0.03, permutation test, Fig-

ure 7C). Remarkably, the relative valence switched sign in

several cases, demonstrating that perceptual decisions can be

modulated by the olfactory environment.

The accuracy of model predictions was robust. On average,

the direction of change in relative valence was more accurately

predicted as the number of glomeruli in themodel increased (Fig-

ure 7D, left), indicating that this effect also depends on summing

small contributions over many glomeruli. Moreover, the accu-

racy of the predictions correlated well with the prediction perfor-

mance of the model (Figure 7D, right), showing that models that

predict the valence of individual test odors well also tend to

perform better at predicting contextual changes in relative

valence.

To gain further insight into this phenomenon, we tested the in-

fluence of abruptly changing the olfactory context during the

experiment. Using the same odor sets, we presented the first

context during the first half of the experiment (trials 1–8) and

switched to the second context during the second half (trials

9–15). This should in principle inform us on the timescale of

adaptation to the olfactory context. When we compared these
Neuron 91, 155–167, July 6, 2016 161
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Figure 6. Optogenetic Activation of DM4

ORNs Evokes Attractive Behavior

(A) Responses of a Chrimson-expressing DM4

ORN (ab2A neuron) to a 637-nm laser light pulse at

two different intensities. Red bar indicates period

of laser application (1 s). Blue arrows denote the

distinctive A and B spikes produced by the two

neurons housed in the sensillum.

(B) Difference in VI between laser ON (5.0 mA) and

laser OFF conditions in response to two odors, for

Chrimson-positive (n = 21) and control (n = 24) flies

(mean ± SEM). Both are of the same genotype,

Or59b-Gal4;UAS-Chrimson, but control flies were

not fed all-trans retinal (ATR). ATR-fed flies display

significantly more attractive responses when

odors are paired with laser (Wilcoxon signed-rank

test, Bonferroni-corrected, p < 0.05).

(C) Difference in VI between laser ON (12.5 mA) and laser OFF conditions without odorant stimulus, for ATR-positive (n = 17) and control (n = 21) flies (mean ±

SEM). Laser application was restricted to antennae by covering eyes and head cuticle with aluminum foil. ATR-positive flies show a significantly more attractive VI

(Wilcoxon signed-rank test, p < 0.05).
data with the data obtained by sampling odor sets separately in

different animals, we found that the results agreed: although

changes in relative valence measured in the same animals

tended to be smaller than those measured in different flies, the

sign of the change was the same except for one case (Figure 7E).

Interestingly, a model in which the relative valence of odors pre-

sented in the second half of the experiment is computed relative

to a broader context, consisting of the sum of the first and sec-

ond contexts, also predicts that the changes in relative valence

should be smaller when the two contexts are presented sequen-

tially (Figure S6). This suggests that in the second half of the

experiment (10 to 20 min after the start of the experiment), flies

are still affected by the odors sampled during the first 10 min,

implying that adaptation occurs relatively slowly over a timescale

of several minutes.

DISCUSSION

The aim of this studywas to search for a general olfactory code—

revealing the quantitative relationship between population neural

activity and olfactory behavior that holds true for various odors

under different contexts. Previous investigations have estab-

lished how information about olfactory stimuli is encoded as pat-

terns of glomerular activity in the olfactory bulb in vertebrates

and the AL in insects. However, the computation that allows de-

coding of these activity patterns to guide behavior remained

elusive. Here we present a model that can predict a fly’s re-

sponses to novel odors and the way these responses adaptively

change according to the olfactory environment.

A Decoding Model of Context-Dependent Olfactory
Perception
There are several prerequisites for constructing a decoding

model of perceptual performance. First, it is essential to obtain

neuronal and behavioral data that are directly comparable.

Most studies in Drosophila recorded transient neural activity in

fixed preparations while scoring behavior integrated over an

extended period of time in another setting (Knaden et al., 2012;

Kreher et al., 2008; Parnas et al., 2013; Ronderos et al., 2014;
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Semmelhack and Wang, 2009; Suh et al., 2004). Here, we

made tethered individual flies navigate in a flight simulator so

that identical, temporally aligned stimuli can be delivered during

behavior and physiology experiments. A second requirement is

to obtain physiological signals from a sufficiently large portion

of neurons carrying the relevant sensory information. We took

advantage of the Drosophila AL circuit, which is numerically

and physically compact enough to be fully scanned by two-

photon Ca2+ imaging, and whose outputs reach brain regions

involved in memory and innate behaviors (Masse et al., 2009).

Finally, it is necessary to cover a sufficiently large stimulus

space, a requirement which is particularly stringent in olfaction

where clearly defined axes for describing stimuli are lacking.

We fulfilled these requirements by imaging PN dendritic activity

in three quarters of the glomeruli at �1.7 Hz, in response to 84

stimuli with diverse chemical structures, including binary mix-

tures and odorants at different concentrations. This comprehen-

sive dataset (Table S2) could serve as a central counterpart of

resources on odor representation by ORNs (Münch and Galizia,

2016).

Combining behavioral and physiological data allowed us to

formulate a model explaining how behavioral responses can be

decoded from glomerular activity. This simple model consists

of a normalization step, operating independently on individual

glomeruli, followed by a linear summation over all glomerular

channels. Linear summation was naturally suggested by behav-

ioral and physiological responses to binary mixtures and was

sufficient to explain our data. Previous studies on mitral/tufted

cells of the olfactory bulb and PNs of the insect AL reported re-

sults ranging from linear (Davison and Katz, 2007; Gupta et al.,

2015; Khan et al., 2008) to non-linear interactions of the mixture

components (Davison and Katz, 2007; Giraudet et al., 2002;

Niessing and Friedrich, 2010; Shen et al., 2013; Tabor et al.,

2004). However, because none of these studies examined

behavior, it remained unknown whether glomerular output

directly reflects innate olfactory perception. Here, we found

that a linear model provided a good fit to the data. More impor-

tantly, behavioral responses mirrored the gradual change in PN

activity. We do not claim, however, that non-linear interactions
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Figure 7. The Relative Valence of Pairs of

Odors Depends on the Olfactory Context

(A) Description of a hypothetical mechanism un-

derlying context-dependent changes in relative

valence in the normalization model. Different

olfactory contexts are characterized by different

profiles of PN activation, represented as Gauss-

ians, determined by PN responses to the six odors

in the context (arrowheads). According to the

model, the attractive or aversive effect of a PN is

enhanced if its activation profile in a given context

is narrow, but weakened if it is broad (see text for

details). As a consequence, the relative VI (VI2 –

VI1), determined by summing differences in

normalized PN activity over glomeruli, becomes

context dependent.

(B) Schematic of experimental procedure. Two

odor sets are prepared that include a pair of odors

in common (odor 1 and 2). The remaining four

odors define the olfactory context. Behavioral re-

sponses to both sets aremeasured independently,

and the relative valence of the common odors

is computed for each set as the difference in VIs

(VI2 – VI1). The context-dependent change in

relative valence is defined as the difference in this

value between two contexts D(VI2 – VI1).

(C) Comparison of observed changes in relative

valence with predictions of the normalization

model, showing good agreement (p < 0.03, per-

mutation test). Five odor pairs were obtained using

four odor sets (n = 21–23 flies for each set).

Pair 1: methanoic acid/1-octanol. Pair 2: meth-

anoic acid /acetophenone. Pair 3: 1-octanol/ace-

tophenone. Pair 4: 2-butanone/1-butanol. Pair 5:

methanoic acid/1-butanol. Error bars show SEM

(top, across tested flies; bottom, across 9 sets of

glomerulus weights obtained in cross-validation).

(D) Left: average percentage of correctly pre-

dicted signs of change in relative valence, as a

function of the number of glomeruli included in

the model. Right: average prediction performance

of the model as a function of the mean-square

error on the prediction of changes in relative

valence.

(E) Percentage of odor pairs for which the direction

of change in relative valence was correctly pre-

dicted. Black: ‘‘different flies’’ condition, in which

the two contexts were sampled independently by different animals (same data as in C). Gray: ‘‘same flies’’ condition, in which the two contexts were presented

sequentially to the same animals (n = 40–41 flies for each pair of odor sets). Dotted line indicates chance level (50%).
between glomeruli do not exist. For example, the efficacy of a

glomerulus could be enhanced or depressed when it is co-acti-

vated with specific other channels. Nevertheless, given the ac-

curacy of the linear framework, if such interactions do exist

they are likely to be relatively weak or take effect in a stimulus

range outside of our odor set.

A remarkable feature of our normalization model is its predic-

tion that relative valence of odors can change depending on the

olfactory environment. Behavioral experiments indeed showed

that the fly’s relative odor preference scales, and even switches,

inmany cases. Normalization is ubiquitous in the brain (Carandini

and Heeger, 2011), and also in the AL, where it is reportedly im-

plemented by short-term depression at the ORN-PN synapse

(Kazama and Wilson, 2008) and divisive inhibition within the AL
network (Olsen et al., 2010). We modeled normalization using

mean subtraction and division by the SD, two widely used oper-

ations to explain neuronal adaptation occurring at a short time-

scale (Baccus and Meister, 2002; Chander and Chichilnisky,

2001; Nagel and Doupe, 2006; Ohzawa et al., 1985). Here, we

show that this framework can also explain behavioral adaptation

occurring over a longer timescale.

It would be of interest to determine where and how the normal-

ization operation described here takes place in the olfactory cir-

cuit. Mean subtraction is a form of high-pass filtering, which

could be implemented through short-term synaptic plasticity

(Abbott and Regehr, 2004), for example at synapses between

PNs and third-order neurons. Alternatively, it may be supported

by spike-frequency adaptation (Benda and Herz, 2003). For the
Neuron 91, 155–167, July 6, 2016 163



divisive component, it is not immediately obvious how a stan-

dard deviation could be computed; however, alternative models

are possible. For example, in our data the SD correlated highly

with the maximal activity, so that a model that rescales glomer-

ular efficacy by the maximal activation performs equally well

(data not shown). This simple form of gain control might be im-

plementable, for example, by slow synaptic depression (Roth-

man et al., 2009). Although our data do not allow us to specify

the exact mechanism of normalization, a nonlinear processing

step is necessary to explain context-dependent changes in rela-

tive valence.

Rapid Odor Valuation by Tethered Flies
Earlier studies using tethered flies characterized how theymodu-

late their flight upon encountering olfactory cues, but with few

odors (Bhandawat et al., 2010; Frye and Dickinson, 2004; Guo

and Guo, 2005; Wolf and Heisenberg, 1991). It therefore re-

mained unexplored whether flies express fixed or graded re-

sponses depending on olfactory identity. We exposed flies to a

large panel of odors and found a spectrum of responses. This

suggests that flies are able to discriminate various odors and

take graded actions. The difference in initial response was

manifest within several hundreds of ms, demonstrating that

flies can not only detect but also interpret odors rapidly. This

initial decision correlated with the proportion of time spent

outside the odor after prolonged exploration, suggesting that

it reflects innate odor valuation. The short timescale of percep-

tual decision parallels that of the rodent’s single sniff, which

is sufficient to discriminate odors (Uchida and Mainen, 2003;

Wesson et al., 2008). Given that odors in a natural environment

are found in the form of plumes, which a navigating fly can cross

in an instant (Murlis et al., 1992), the duration of each odor

sampling may be comparable to, or even shorter than, a sniff.

Therefore, rapid odor valuation is likely to be a fundamental

requirement for efficient odor-guided navigation in complex

environments.

Coding of Odor Valence by Individual Glomeruli
Previous research identified a number of glomeruli that appear

dedicated to processing specific odorants such as pheromones,

or broader classes of odors such as acids (reviewed in Li and Lib-

erles, 2015). In all cases, silencing the glomerulus inhibited a

behavioral response, suggesting that information about the

valence of the tested stimuli is exclusively encoded in the activity

of these glomeruli. However, because these studies generally

used few odorants, and only a small fraction of glomeruli were

tested, it is unclear how these results generalize to broader

odor sets, and whether similar conclusions may hold for each

of the �50 glomeruli.

Our model attributes a specific weight to each glomerulus; the

valence of a glomerulus thus corresponds to the sign of the asso-

ciated weight. This model accurately fitted the data and pre-

dicted responses to novel odors. However, this does not entail

that a causal relationship exists between glomerular activity

and behavioral responses. We therefore tested causality by

genetically blocking ORN input to targeted glomeruli, and by

optically enhancing ORN input to a single glomerulus. The result-

ing changes in behavior were broadly consistent with the predic-
164 Neuron 91, 155–167, July 6, 2016
tions of our model. Furthermore, when we compared glomerular

valences obtained in our analysis with published data in which a

causal link was demonstrated, we found that both agreed in

most cases. Attraction was previously linked to the activation

of DM1 and VA2 (Semmelhack and Wang, 2009), VM1 (Min

et al., 2013), DC3 (Ronderos et al., 2014), and DA1 and VA6

(Schlief and Wilson, 2007). Conversely, DA2 (Stensmyr et al.,

2012), DM5 (Semmelhack and Wang, 2009), and DM2 (Gao

et al., 2015) were reported to mediate aversive responses. Our

data differ from these results in only two cases, DC3 and VA6,

both of which are of aversive valence in our model. It should

be noted, however, that although DC3 was shown to subserve

attraction to farnesol in Ronderos et al. (2014), another study

(Knaden et al., 2012) reported DC3 to be activated almost

exclusively by aversive odorants. Moreover, the study reporting

VA6-mediated attraction to geranyl acetate (Schlief and Wilson,

2007) also found that it mediated aversive responses to higher

concentrations of the same odorant. Our results are thus in

agreement with the published literature, supporting the validity

of our model.

Integration of Valence Information over Multiple
Glomerular Channels
Although a causal effect on behavior had been demonstrated for

some glomeruli, it remained unclear whether animals make deci-

sions based on the entire AL output, or rely on a smaller subset of

specialized glomeruli. Four lines of evidence in our data support

the hypothesis that behavioral responses result from integrating

valence information over a large number of glomerular channels.

First, the predictive power of the model increased as more

glomeruli were added to the set of independent variables. Sec-

ond, genetically blocking synaptic input to subsets of glomeruli

had small and graded effects on behavior. This observation is

in line with a previous study of odor discrimination (Parnas

et al., 2013), in which silencing subsets of glomeruli evoked

graded behavioral effects. Third, blocking input to every tested

glomerulus biased behavior in a direction consistent with the

model. Fourth, the extent of this behavioral bias was quantita-

tively predicted by our population decoding model.

Our model naturally accounts for findings on the processing of

both specific and general odors: whereas behavioral responses

to odors that exclusively activate narrowly tuned receptors can

be explained solely by the activity of the corresponding

glomeruli, responses to general odors recruiting multiple recep-

tors need to be explained by an integrated output from the acti-

vated glomerular ensemble.

In Drosophila, innate olfactory behavior depends primarily on

the lateral horn (LH), one of two brain regions postsynaptic to

the AL (de Belle and Heisenberg, 1994; Heimbeck et al., 2001;

Parnas et al., 2013). The LH is innervated by the excitatory PNs

examined in the present study and by inhibitory PNs (iPNs; Liang

et al., 2013; Parnas et al., 2013; Strutz et al., 2014; Wang et al.,

2014). Whereas one study reported that a subset of iPNs re-

sponds differentially to attractive and aversive odors and con-

tributes to behavioral expression (Strutz et al., 2014), another

study (Parnas et al., 2013) found no effect of iPNs on innate re-

sponses, suggesting a major role of excitatory PNs in odor valu-

ation. A better view on the interaction between these pathways



requires studying how the population code described here in the

AL is transformed in the LH.

EXPERIMENTAL PROCEDURES

Fly Stocks

Flies were raised on conventional cornmeal agar medium under a 12 hr light/

12 hr dark cycle at 25�C. Experiments were performed on 2- to 4-day-old adult

females. Flies were starved for 4–6 hr with water prior to experiments. Flies

used in the study are listed in Table S3.

Olfactory Stimulation

Odors were delivered by passing an air stream through 4 mL of odorant solu-

tion in a vial. A portion of the air stream was delivered through a ø2 mm outlet

placed 10 mm from the fly. Air flow was set to 0.3 m/s at fly location. A total of

84 odors were used (Table S1).

Behavioral Experiments

Flies were cold anesthetized, tethered to a stainless steel pin, and transferred

to the flight simulator, which consisted of an odor delivery apparatus and a

semi-circular array of green LEDs. The setup was enclosed in an opaque

container and the fly was visualized using an infrared camera.

Flight behavior was monitored using two microphones positioned laterally

�1 mm from the tip of the extended wing on either side of the fly, whose out-

puts were analyzed in real time to extract turning direction and speed. The val-

idity of computing turning propensity from microphone data was verified by

comparing with video data (Figure S1). The visual stimulus (essential to in-

crease flight reliability) consisted of vertical gratings with 60 deg�1 spatial fre-

quency. The panel of 84 odors was divided in sets of 6 (Table S1) and a single

set was applied in each experiment (except Figure 7E, ‘‘same flies’’ condition,

where two sets were applied consecutively). The protocol consisted of 15

blocks, in which each of the 6 odors plus mineral oil were applied in random-

ized order, up to a fixed duration (4 s unless otherwise stated) and in a

restricted spatial region (45� centered at the fly location at the time of odor con-

tact). Odor application was terminated when the fly exited this region and re-

initiated upon re-entry within the application period. For optogenetic activation

experiments, a 637 nm laser targeted at the antennaewas controlled in closed-

loop similarly as odorant stimuli.

Two-Photon Imaging

Individual flies were attached to a custom recording plate with ultraviolet-

curing adhesive while cold-anesthetized. Saline bubbled with 95% O2/5%

CO2 was added and the head cuticle was removed to expose the brain.

The entire right AL was imaged with a two-photon laser scanning micro-

scope. The fluorophore was excited with a titanium:sapphire pulsed laser

mode locked at 930 nm. Each odor was presented for 4 s with 1 min inter-trial

interval. Odor valve opened in frame 9 and closed in frame 16. Each odor was

presented four times in randomized order as in behavioral experiments. After

data collection, a high-resolution 3D image of the AL comprising 99 optical sli-

ces (1 mm interval) was acquired for offline identification of guide-post

glomeruli (see Data Analysis section).

Data Analysis

Behavioral Data Analysis

Valence indices (VIs) for individual flies were obtained by aligning flight trajec-

tories to the time of odor contact (Figure S7) and calculating the proportion of

time spent outside the plume. Instantaneous VIs were calculated in every 5 ms

time bin, and the mean VI (simply referred to as VI throughout the text) was

calculated as an average over the last 1 s of odor presentation. Mean and stan-

dard error were computed by pooling all tested flies. DWBA in Figure 1G was

calculated using the absolute difference in the standardized wing-beat ampli-

tudes (Supplemental Experimental Procedures). Trials in which flight was inter-

rupted were excluded.

Two-Photon Imaging Data Analysis

Images were analyzed in three steps: correction for brain motion, creation of

template glomeruli, and extraction of fluorescence changes in each glomer-
ulus using the template (Figure S3). Table S2 summarizes the mean response

of each of the 37 glomeruli to the 84 odors in our dataset.

Decoding Analysis

For the normalization model, PN data were standardized in each glomerulus

using mean and standard deviation values computed independently for each

set of six odors, by pooling trial-averaged DF/F responses (imaging frames

12 to 16) over all six odors. VI values were similarly centered by subtracting

their mean value over the six odors. The model was fit using partial least-

squares regression and a cross-validation procedure to control for overfitting.

Prediction performance was assessed using the R2 coefficient and statistical

significance using a permutation test.

See Supplemental Experimental Procedures for detailed methods.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
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discrimination in Drosophila: from neural population codes to behavior.

Neuron 79, 932–944.

Potter, C.J., Tasic, B., Russler, E.V., Liang, L., and Luo, L. (2010). The Q sys-

tem: a repressible binary system for transgene expression, lineage tracing,

and mosaic analysis. Cell 141, 536–548.

Ronderos, D.S., Lin, C.C., Potter, C.J., and Smith, D.P. (2014). Farnesol-de-

tecting olfactory neurons in Drosophila. J. Neurosci. 34, 3959–3968.

Root, C.M., Semmelhack, J.L., Wong, A.M., Flores, J., and Wang, J.W. (2007).

Propagation of olfactory information in Drosophila. Proc. Natl. Acad. Sci. USA

104, 11826–11831.

Rothman, J.S., Cathala, L., Steuber, V., and Silver, R.A. (2009). Synaptic

depression enables neuronal gain control. Nature 457, 1015–1018.

Rubin, B.D., and Katz, L.C. (1999). Optical imaging of odorant representations

in the mammalian olfactory bulb. Neuron 23, 499–511.

Schlief, M.L., and Wilson, R.I. (2007). Olfactory processing and behavior

downstream from highly selective receptor neurons. Nat. Neurosci. 10,

623–630.

Semmelhack, J.L., and Wang, J.W. (2009). Select Drosophila glomeruli

mediate innate olfactory attraction and aversion. Nature 459, 218–223.

Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M., and Miesenböck, G.
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